China Good quality High Torque Customized Inline Planetary Gear Reducers Heavy Duty Manufacturer Coaxial Shaft Epicyclic Drive Orbital Gear Unit Box Speed Reducer top gear

Product Description

 

Company Profile

We CHINAMFG is a OEM factory, accpet customerized. Most of our products are customerzation.The product include gear housing/boxes/reducers, Iron casting products, Aluminum products. Such as auto parts, agriculture parts, and other industrial parts.
We have the most advanced testing facilities, such as spectral analyzer for rubber material chemical composition test, tensile strength testing machine, impact value tester and hardness meter, magnetic particle testing machine, sandblasting machine and heat treatment equipment. Besides, there are numerous advanced equipment in the precision machining workshop: have 23 sets CNC lathes, 10sets vertical CNC boring and milling center and 1 horizontal boring and milling center imported from Korea, 2 general milling machine, and 2 general lathes, 1 grinder, 10sets drilling and tap machines, 2 half automatic saw, and 1 Coordinate Measuring Machine (CMM), 1 Projector and 1 machining surface quality testing machine and 1 Mahr altitude instrument. Our product’s tolerance can be controlled under 0.01mm. The testing machine’s accuracy is within 0.005mm. ISO9000 has been executed.
 

Product Parameters

Maximum torque:  20,000NM
Maximum output speed:  <1200rpm
Maximum input speed:  <2500rpm
Ratio: 3:1 up to 4:1
Output type:  square shaft
hex shaft
flange

Our Advantages

1. 20 years of experience in manufacturing and exporting
2. OEM and custom-made service
3. All kinds of castings can be manufactured according to the drawings, samples or specific industry standard
4. Strong engineering team makes high quatliy
5. The coordinated service(casting, machining and surface treatment) make lower price if possible
6. Advanced-level equipments
7. Full material testing process and quatliy control system

8. Quality assurance and delivery on time

About CHINAMFG Industrial

 

 

 

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Samples:
US$ 3000/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

epicyclic gear

How does an epicyclic gear mechanism work in automatic transmissions?

An epicyclic gear mechanism, also known as a planetary gear system, plays a crucial role in the operation of automatic transmissions. Here’s a detailed explanation:

An automatic transmission utilizes a combination of different clutches, bands, and an epicyclic gear system to achieve gear ratios and control the transfer of power from the engine to the wheels. The epicyclic gear mechanism consists of the following components:

1. Sun Gear:

The sun gear is a central gear placed at the center of the mechanism. It receives power from the engine and is connected to the input shaft of the transmission.

2. Planet Gears:

Several planet gears are arranged around the sun gear and mesh with both the sun gear and the ring gear. The planet gears are mounted on a carrier, which allows them to rotate around the sun gear.

3. Ring Gear:

The ring gear is the outermost gear in the mechanism and has internal teeth that engage with the planet gears. The ring gear is connected to the output shaft, which transfers power to the wheels.

Here’s how the epicyclic gear mechanism works in an automatic transmission:

1. Neutral Position:

In the neutral position, no gears are engaged, and power flows freely through the transmission without any gear reduction or multiplication. The sun gear and the ring gear remain stationary.

2. Gear Engagement:

When a specific gear is selected, hydraulic clutches and bands are used to engage and disengage various elements of the epicyclic gear mechanism. The clutches and bands selectively hold and release specific gears to achieve the desired gear ratio.

3. Gear Ratios:

The gear ratio is determined by the arrangement and engagement of the gears in the epicyclic gear system. The sun gear, planet gears, and ring gear interact to produce different gear ratios. By selectively holding or releasing specific gears using clutches and bands, different gear ratios can be achieved, allowing the transmission to adapt to different driving conditions.

4. Power Flow:

The power flows through the different elements of the epicyclic gear mechanism based on the gear ratio selected. The input power from the engine is transmitted to the sun gear. Depending on the gear ratio, power is then transferred to the planet gears and the ring gear. The output shaft, connected to the ring gear, receives the power and transfers it to the wheels, propelling the vehicle.

5. Shifting Gears:

When shifting gears, the hydraulic control system of the transmission adjusts the engagement of the clutches and bands, causing the epicyclic gear mechanism to shift to a different gear ratio. This allows for seamless and automatic gear changes without the need for manual shifting.

Overall, the epicyclic gear mechanism in automatic transmissions enables the transmission to provide different gear ratios, control power flow, and facilitate smooth gear shifting. This mechanism plays a crucial role in the efficient and automatic operation of automatic transmissions in vehicles.

epicyclic gear

How do epicyclic gears contribute to reducing gear wear and noise?

Epicyclic gears, also known as planetary gears, offer several advantages that contribute to reducing gear wear and noise. Here’s a detailed explanation:

1. Load Distribution:

The arrangement of multiple planet gears in an epicyclic gear system helps distribute the load evenly across the gear teeth. This load distribution minimizes stress concentration on individual gear teeth, reducing the risk of wear and fatigue failure. By sharing the load, epicyclic gears can handle higher torque levels while reducing the wear on specific gear teeth.

2. Increased Tooth Contact Ratio:

Epicyclic gears typically have a higher tooth contact ratio compared to other gear types, such as spur or helical gears. The tooth contact ratio refers to the number of teeth in contact at any given time. A higher tooth contact ratio results in a smoother distribution of load and reduces localized contact stresses. This helps to minimize wear and noise generation during gear operation.

3. Balanced Loading:

The design of epicyclic gears allows for balanced loading of the gear teeth. The load is distributed among multiple planet gears, and each gear tooth engages with multiple teeth on both the sun gear and the ring gear simultaneously. This balanced loading helps to minimize tooth deflection and backlash, reducing wear and noise generation.

4. Lubrication:

Epicyclic gears benefit from effective lubrication due to their design. The gear teeth are constantly immersed in the lubricant, which helps reduce friction and wear. Proper lubrication also helps to dampen vibrations and reduce noise generated during gear operation.

5. Controlled Speed and Load Transitions:

Epicyclic gears can provide smooth speed and load transitions due to their ability to change gear ratios. When transitioning from one gear ratio to another, the gear engagement can be carefully controlled to minimize sudden shocks or impacts, which can contribute to wear and noise. The controlled speed and load transitions in epicyclic gears help reduce gear wear and noise levels.

6. Precision Manufacturing:

Epicyclic gears are often manufactured with high precision to ensure accurate gear meshing and minimize manufacturing errors. Precise gear manufacturing helps to maintain proper alignment and minimize tooth misalignment, which can lead to increased wear and noise.

In summary, the load distribution, increased tooth contact ratio, balanced loading, lubrication, controlled speed and load transitions, and precision manufacturing of epicyclic gears all contribute to reducing gear wear and noise. These factors make epicyclic gears a favorable choice in applications where minimizing wear and noise levels is important.

epicyclic gear

What is the role of a sun gear, planet gears, and ring gear in an epicyclic arrangement?

In an epicyclic gear arrangement, the sun gear, planet gears, and ring gear each have specific roles and functions. Here’s a detailed explanation:

1. Sun Gear:

The sun gear is the central gear component in an epicyclic arrangement. Its primary role is to provide the input rotational motion or power to the gear system. The sun gear is typically located at the center and is surrounded by the planet gears. It engages with the planet gears through meshing teeth, transmitting rotational force to them.

2. Planet Gears:

The planet gears are multiple gears that revolve around the sun gear in an epicyclic arrangement. They are mounted on a carrier, which holds and supports the planet gears. The planet gears mesh with both the sun gear and the ring gear. As the sun gear rotates, it causes the planet gears to rotate around their own axes while simultaneously orbiting around the sun gear. The planet gears transmit the rotational motion and torque from the sun gear to the ring gear.

3. Ring Gear:

The ring gear, also known as the annular gear or the outer gear, is the outermost gear component in an epicyclic arrangement. It has internal teeth that mesh with the planet gears. The ring gear provides the outer boundary of the gear system and engages with the planet gears, transferring the rotational motion and torque from the planet gears to the output or the next stage of the gear system. In some arrangements, the ring gear is fixed or held stationary, while in others, it can rotate.

The combination and interaction of the sun gear, planet gears, and ring gear in an epicyclic arrangement enable various gear functions, such as gear reduction, torque multiplication, speed control, and directional changes. The arrangement and engagement of these gears determine the gear ratios and overall performance of the gear system.

China Good quality High Torque Customized Inline Planetary Gear Reducers Heavy Duty Manufacturer Coaxial Shaft Epicyclic Drive Orbital Gear Unit Box Speed Reducer top gearChina Good quality High Torque Customized Inline Planetary Gear Reducers Heavy Duty Manufacturer Coaxial Shaft Epicyclic Drive Orbital Gear Unit Box Speed Reducer top gear
editor by CX 2024-04-10